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ABSTRACT

There is currently considerable interest in low-cost, lightweight, compactly packagable
deployable elements for various future missions involving small spacecraft. These
elements must also have a simple and reliable deployment scheme and possess zero or
very small free-play. Although most small spacecraft do not experience large
disturbances, very low stiffness appendages or free-play can couple with even small
disturbances and lead to unacceptably large attitude errors which may involve the
introduction of a flexible-body control system. A class of structures referred to as
"rigidized structures” offer significant promise in providing deployable elements that will
meet these needs for small spacecraft. The purpose of this paper is to introduce several
rigidizable concepts and to develop a design methodology which permits a rational
comparison of these elements to be made with alternate concepts.

INTRODUCTION
There is currently considerable interest in low-cost, lightweight, compactly packagable
deployable structural elements for various future space missions involving small

spacecraftl. In addition to these requirements, simplicity and reliability of deployment
are of paramount concern. In many instances the concern over the cost and reliability of
deployable components leads spacecraft designers to either not consider them at all, or to
use existing deployable components with low stiffness or joint deadbands. In either case,
spacecraft performance for such missions can be severely compromised due to the lack of
well accepted, high performance deployable components.

Although most small spacecraft do not experience large disturbances, very low
stiffness appendages can couple with even small disturbances and lead to unacceptably
large attitude errors which may involve the introduction of a flexible modes control
capability onboard which increases spacecraft cost. Thus, there exists a need in small
spacecraft for stiff deployable components which are truly low cost and reliable.

The current commercially available SOA for deployable beam elements includes
the unfurlable STEM, the continuous-coilable-longeron mast, the FASTMAST as used
for the Tether satellite, and unfolding "Lazy-Tong" devices which deploy a few bays of
panels such as on the SEASAT. The other approach used in deployment is to simply
hinge panels or elements together with no supporting structure. None of these available
deployable devices satisfies all of the desired requirements for the new generation of
lighter, faster, and cheaper, small spacecraft.



A class of structures referred to as "rigidized structures2" offer significant
promise in providing high performance structural components for the new small
spacecraft. A large reflector based on inflatable and rigidized concepts is currently being
built for an In-Step flight experiment3 as a proof of concept for a microwave and VLBI
antennas. Such reflectors have also been studied for optical interferometers4 and solar
concentrators>. The purpose of this paper will be to introduce several new "rigidizable"
structural concepts, and to demonstrate their performance potential through systematic
design studies and through comparisons with alternate concepts.

BEAM DESIGN METHODOLOGY

General Approach for Developing Beam Weight Equations
The primary purpose of this paper is to develop an approach to enable a rational
comparison to be made of weight and diameter of different deployable beam concepts for
small spacecraft. The four general beam concepts to be compared are as follows:

a. Unfurlable BI-STEM®

b. Coilable longeron7

c. Space rigidizable organic matrix composite (inflatably deployed)8
d. Unfurlable thin walled aluminum (inflatably deployed)2.9,10

For purposes of comparing the relative merits of the different beam concepts, the
deployable beam is assumed to be cantilevered from a spacecraft and supporting a tip
mass as shown in Sketch-a. The design methodology developed herein could readily be
applied to other applications such as supporting a distributed solar array. Although there
are numerous factors which contribute to the concept selection and design of deployable
beams for spacecraft, attention in this paper is focused on two primary design drivers.
These are 1), a lowest beamn natural frequency constraint, and 2), a cantilever root angular

acceleration constraint 6 as shown in Sketch a.
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Sketch a.- Schematic of Spacecraft with Deployable Beam

The constraint on frequency is commonly imposed upon spacecraft components to deal

with flexible control issues, while the constraint associated with a root angular
acceleration imposes a loading that the beam must be able to withstand without failure.
A general description of the four beams considered in this paper and how they are
modeled are given in the next sections.



a. Unfurlable STEM.- This class of structures involves materials which are thin enough
to be rolled up for packaging without yielding, and subsequently unfurled into the
deployed state. The classic example of this type of structure is the STEM and BISTEMO.
The STEM structure is a thin metallic sheet which is coiled into a compact cylindrical roll
and deployed on-orbit. The design is such that no involved bending strains exceed yield.
These structural elements unfurl into a long tubular shape, thus forming a deployed beam.
The major shortcomings of these elements is that a slit is required along the length to
accommodate low strain packaging, resulting in very low beam torsional stiffness and
that the deployment mechanism is quite heavy. The BISTEM beam is composed of two
interwoven STEMS which provides additional torsional stiffness from the resulting
friction between the overlapping elements. Under some loading conditions a slippage can
occur between the overlapping elements resulting in unwanted deformation or dynamic
perturbations. In the present paper the STEM is treated as a simple steel tube with a wall
thickness of 0.005" (5 mils).

b. Coilable longeron.- The coilable longeron beam is a highly used deployable beam and
is well described in reference 7. The weight and performance equations for this beam are
taken from ref. 7. The popularity of this beam arises from its high reliability and wide
experience base. Its shortcomings are that is requires a relatively heavy canister and is
limited in size to about 20" in diameter due to high straining in the stowed condition.

c. Space rigidizable organic matrix composite (inflatably deployed).- This concept is
basically a simple tubular beam fabricated from a fiber fabric impregnated with a matrix
that is rigidize:d8 after pressure deployment in space. This concept is still in the
development stage, however, it offers the promise of a very simple, lowcost, compactly
packagable beam. In the present paper the tube is considered to be fabricated from a bi-
directional KEVLAR fabric impregnated with a rigidizable matrix. The effective

properties assumed for the beam material are: E = 4x10° psi, thickness =0.011", and a
weight density of 0.05 1b/in>.

d. Unfurlable thin-walled aluminum (inflatably deployed).- This concept is basically a
thin-walled aluminum tubular beam presuure deployed in space. For this approach the
tubes are made from thin (~3 mil) low-yield-stress aluminum sandwiched between two
thin layers of reinforced Kapton film for structural strength and initial inflatant
containment2:9. The deployment is obtained by pressurization of the tube to a
cylindrical shape. After deployment the pressure is increased to yield the thin aluminum
into its final wrinkle-free state. The tube is then de-pressurized and remains in a
cylindrical shape providing a high performance structural member. Although this
concept is still in the development stage a full scale deployable solar array has been built
and ground demonstrated?. This concept has the potential for being an extremely simple,
low-cost, and reliable deployment system. The primary shortcoming of this concept is
the low level of development that has occured in exploring different hybrid wall concepts.
In the present paper the beam is simply considered to be fabricated from 0.003" thick

aluminumwith a modulus of 10x10° psi.

Weight of a Thin Walled Tubular Beam Subjected to Frequency
and Root Moment Constraints



The weight of a thin walled tubular beam as shown in Sketch b can be written as:
Wrp =pAL = p(2nRt)L (T1)

where p is the weight density of the beam material, and R and t are radius and thickness
of the tubular beam respectively.
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Sketch b. Schematic of tubular beam

There are two unknowns, R and t, in equation T1 that must be determined to assure that
the beam performs as required. The two constraints, frequency and cantilever root
angular acceleration provide the two equations for determining these two unknowns.

Frequency Constraint.- For a cantilever beam with a tip mass, myp, large enough that
the mass of the beam can be neglected, the first natural bending frequency f is given by
beam theory as:

(T2)

where E is the extensional modulus of the tube material. If the tube is made of an
orthotropic material, E is the extensional modulus in the long direction of the beam. The
moment of inertia of a thin walled tubular beam is approximated by:

I=nR%t (T3)

Substituting for I from equation T3 into equation T2 yields the following equation
governing R and t:

3 Lf
Rot=—— 4
3En ()
where f = L'my, (2rf)>



Beam Root Moment Constraint.- Using the rotational dynamic equilibrium equation,

the moment M at the root of a cantilever beam with a large tip mass subject to a root
acceleration 9 is:

M=ab (T5)

where 0= Lzmﬁpé

and o is the dynamic overshoot factor due to a suddenly applied root acceleration. In
this paper the dynamic overshoot factor o is conservatively taken as 2 for numerical
comparisons.

The root stress G in the cylinder due to this moment is:

MRMR

T6
I nR3 (T6)

The failure mode in the tubular beam is assumed to be local wall buckling of the cylinder
which is given by:

Et
Olocal = CE (T7)

This is a generalization of the wall buckling equation for an isotropic cylinder which has
a theoretical value of C = 0.6 In the present paper, the constant C is determined for the
particular orthotropic wall construction being considered.
Combining equations T5, T6, and T7, a second equation relating R and t is obtained as:
Rt = 8 (T8)
nCE
Closed Form Solution for Tubular Beam Weight.- A single equation governing the

weight of a tubular beam can be found by substituting the expressions for t and R from
equations T4 and T8 into the weight equation T1 to obtain:

203 4/5 2/5 2/5
Wrs. -———( ) (o) /S(ﬁ—s'Ey o2 )LG/S(f)US(G) (T9)

where the tube radius is given by

1F Vrce)
(G o

and the tube thickness is given by
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Equation T9 relates the beam weight to the loading constraints f and 6, and is useful
for investigating how the beam weight varies as a function of the constraint values as well
as the beam length, the overshoot parameter, and the material parameters. In this

equation the radius r and the thickness t vary as a function of f and 6. For the different
tubular beam concepts considered in the present paper, there are practical constraints on
the thicknesses due to the compact packaging constraints and these are dealt with in the
next section.

Beam weight considering thickness contraints. - For each of the tubular beam concepts
considered in the present paper there is a limitation on the tube wall thickness. This
limitation is imposed in order to compactly package the material without excessive
damage. To account for this thickness constraint, weight equations are derived in this
section for both frequency and root moment constraints considering the thickness to be a
constant.

The radius for a constant thickness tc and for the frequency constraint is obtained directly

from equartion T4 as
= \I/3
g (T12)
3Emnt,

This expression for R is then substituted into the weight equation T1 to obtain

212" o2 433
£~ 73173 Elc/3L f (T13)

The radius for a constant thickness tc and for the root moment constraint is obtained
directly from equation T8 as

-0 (T14)
nCEt;
This expression for R is then substituted into the weight equation T1 to obtain
2pLa§
= T15
™ CEt, (1>

For a given design condition the greater of the two weights as given by equations T13
and T15 must be chosen. It should be noted that the weight given by equation T13
increases for increasing thickness t¢ while the weight given by equation T15 decreases
for increasing thickness tc.



Weight of a Coilable Longeron Beam Subjected to Frequency
and Root Moment Constraints
The weight Wc L, of a coilable longeron beam as shown in Sketch ¢, is taken from
reference 7 as:

Wer =3.4(3pA ,L) (C1)

where A, is the area of each longeron which is positioned at a radius R from the beam's
centroid. For the coilable longeron beam, the two unknowns to be determined from the
frequency and root rotational acceleration constraints are A, and R.

Cross-Section

Sketch c. Schematic of coilable longeron beam

The quantities inside the parentheses of eq. C1 are the weight of the three longerons and
the factor 3.4 is an empirical constant which accounts for the beam's battens, diagonals
and joints. This empirical constant is taken from reference 7 where it was determined by
curve fitting data from several coilable longerons beams which had been built.

Frequency Constraint.- The frequency equation for a cantilevered coilable longeron
beam with a large tip mass is taken to be the same as that for the tubular beam and is
given by equation T2. The bending moment of inertia of a three longeron beam about an
axis passing through its centroid is given by:

I1=1.5A,R? (C2)

It should be noted that the moment of inertia of a three longeron beam is independent of
the angle of the axis which passes through the beam's centroid. In other words the beam
behaves elastically similar to a cylindrical beam with the same radius R, and the same
amount of material at that radius.

Substituting the expression for I from eq. C2 into the frequency equation T2, results in
one equation governing R and A, as:
3(1.5)E

(C3)



Root Moment Constraint.- The root moment is taken to be the same as that for the
tubular beam and is given by eq. T5. For the coilable longeron beam, failure is assumed
to be buckling of the root longeron due to compression from the root moment. Longeron
buckling is taken as the simple support Euler load as:

n?El,

Sy 4
(1.14R)? ()

Euler =

where the beam bay length is given in reference (Crawfordf) as 1.14R, and the moment of
inertia I, of a longeron is:

A2
I,==—%t Cs
‘7 4x ©
2
where A,=Eg—

Combining equations C4, C5, T5, and T6 yields a second equation governing R and A,
as:

R 1.57E

= (Co)
A7 40(1.14)%8

Equation C6 represents a second equation which governs the coilable longeron radius R
and the longeron area A,. In addition to equations C3 and C6, an additional constraint’

must be imposed upon the longeron diameter to accomodate packaging as discussed in
the next section.

Longeron Packaging Constraint.- For elastic packaging7, the longeron diameter, d,
must be limited as follows:

4A,
4 N 7
2R 2R

where € is the longeron allowable strain. In reference 7 this strain value was taken as
0.0133 for fiberglass and is the same value used in the present paper. It should also be
pointed out there is a factor of 2 error in equation 12 of reference 7. The left hand side of
eq. 12 should read d/2R as in eq. C7 rather than d/R.

Coilable Longeron Beam Weight. - Equations C3, C6, and C7 represent three equations
for the two unknowns R and A,, thus the design is overspecified and must be separated
into three possible design cases to determine which two of the three conditions govern.
The three possible cases are: (1) impose the frequency constraint eq. C3 and the root



moment constraint eq. C6, (2) impose the root moment constraint eq. C6 and the stowage
constraint C7, and (3) impose the frequency constraint eq. C3 and the stowage constraint
eq. C7. Case 3 is never critical, thus, the higher of the two weights resulting from cases
(1) and (2) must be taken as the coilable longeron weight and are given as follows:

(1)_Frequency/root-moment constrained, coilable longeron beam weight

From equations C3 and C6, the following two expressions are obtained for A, and R:

/S

- -~ 2
A =| U 406(1.14) B
31.5E| 1.5%E
and
R=—20E A2 (C9)
40(1.14)%6

A single equation governing the weight of the coilable longeron beam can be found by
substituting these expressions for R and A, into C1 to obtain:

1/5
1 (siapY 2/5(_p ) 6/5(m\1/5(5\2/5
Wep =3.403) (@) ( )L ®6)" «wo

3(1.5)| 1.5x g3/3

(2) Root moment/stowage constrained. coilable longeron beam weight

From egs. C6 and C7 an expression for the radius is

ax.14%B)
X1. a
11:(———1 o j (C11)

and the longeron area is found from equation C7. Substituting these into equation C1
yields the following equation for the coilable longeron beam weight as:

3.4(12
WeL. = { )(

(C12)

2x1.5 E2/3g2/3

1.142 )2’3 pLa?/362/3
i

BEAM WEIGHT RESULTS AND DISCUSSION
A general comparison of the various deployable beams concepts constructed of different
materials is difficult to make over a wide range of the frequency and loading design

parameters f and . The reason for this is that the different beams are governed by
practical constraints such as limitations on material thickness which in turn are a function



of the level of the design parameters. In order to obtain insight into the relative weight
and stowage efficiency of the deployable beam concepts considered in the present paper,
a specific set of design requirements are selected which are considered to be
representative of a range of typical spacecraft conditions. The first requirement
considered is a root moment constraint imposed by an angular acceleration of the
spacecraft. In the present paper this root moment is taken to be the same as that provided
by a 0.03 g equivalent lateral static loading. This requirement is satisfied by equating the
moment due to a 0.03g lateral load to the moment caused by a root angular acceleration
as given by equation T5 and is written as:

M, (0.03g)L = LM 8 (R1)
Solving for 6 yields:
b= 0.03g R2)
L

This equation shows that for this particular design condition, the allowable spacecraft
rotational acceleration is simply a function of 1/L. The other design requirement
considered is that of a lowest natural bending frequency constraint. Since the value of
this constraint is typically not well defined, it is varied in this study to determine its
impact on structural weight and beam diameter.

The other spacecraft input needed to make a design study is the tip mass on the beam. To
obtain representative mass values for small spacecraft, the inflatable solar array of ref. 9
was used as an example. This solar array was about 11.5' (3.5) meters long and weighed
about 7 pounds. Since there are two beams that support this weight, half of the weight is

assigned to each beam or mgp =3.51b/386in/sec’~ .01 Ib-sec?/in. For the current
design study this mass is assumed to vary as a function of the square of the beam length
to simulate area masses such as that associated with solar arrays.

To obtain insight into the relative weights and diameters of the deployable beams
considered in the present paper, four beam lengths (3.5, 7, 14, and 28 meters) were
investigated. For each length the beam weights and beam diameters are plotted as a
function of natural frequency. The natural frequency was varied from .02 to 1 Hz to
cover the range of interest for most spacecraft. The properties used for each of the four
beams are presented in the following table.

E, psi p, Ib/in® tc, in

Aluminum 10x10° 1 003
Rigidizable 4x108 05 011
Steel STEM 30x10° 3 005
Coilable Longeron 7 5x10° o7 | -

For all calculations in this study the dynamic overshoot parameter & was taken as 1, and
the local wall buckling constant C from eq. T7 was taken as 0.2.
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L=3.5 meters. - For this beam length the angular acceleration is found from equation R2

to be approximately 0.04 rad/ sec? and the tip mass is 0.01 1b- sec/in (3.86 Ibs). The
weights for the four deployable beams considered in this paper are shown in figure 1, and
the associated beam diameters are shown in figure 2. In figure 1 it can be seen that the 3
mil aluminum beam is the lightest over the low frequency range, while the coilable
longeron beam is lighter for frequencies greater than 0.35 Hz. For this relatively short
length the three tubular beams are governed primarily by the frequency constraint, while
the coilable longeron beam is governed by the root moment/stowage constraint at low
frequencies and by root moment/frequency for the higher frequncies. At very low values
of frequency (less than 0.1 Hz) the aluminum beam is governed by the root moment
strength constraint.

For this short beam length the beam weights are quite low for all four concepts, however,
as seen in figure 2 there is quite a difference in beam diameters. For the three tubular
beams the required diameter is 3 inches or less while the required diameter for the
coilable longeron beam ranges from 4 to 7 inches. The beam diameter will greatly
influence the stowage volume and deployment weight required for the deployable beams.
In the present paper the only weight considered for the deployable beams is that required
for structural performance. For all of the beams there will be a system weight required to
accomplish deployment. For the STEM and the coilable longeron beams there is a
mechanical deployment canister required that is typically several times the weight of the
beam structure’. For the inflatable beams there is the weight associated with the
pressurization system that must be considered. The details of these auxiliary weights are
beyond the scope of the present paper, however, these weights will be a strong function
of beam diameter.

L=7 meters. - For this beam length the angular acceleration is 0.02 rad/sec? while the

tip mass is .04 Ib-sec?/in (15.44 Ibs). These beam weights are shown in figure 3 while
the corresponding beam diameters are shown in figure 4. The aluminum beam is the
lightest over much of the frequency range, however, the strength cutoff for the aluminum
beam is now up to 0.3 Hz. The strength constrained weight of a tubular beam is inversely
proportional to the assumed thickness tc as shown by equation T15. Thus, if the
aluminum thickness could be doubled to 6 mils, the weight of the aluminum beam in the
low frequency range would be reduced by a factor of two. The tubular beam diameters
are seen from figure 4 to be about one half of the coilable longeron beam diameters. In
fact the coilable longeron diameter of almost 20 inches is at the size limit of practicality
for these beams.

L=14 meters. - For this beam length the angular acceleration is 0.01 rad/ sec? while the

tip mass is .16 1b- sec?/in (61.76 lbs). These beam weights are shown in figure 5 while
the corresponding beam diameters are shown in figure 6. For this length the rigidizable
material beam now is the lowest over a large portion of the frequency range. For these
longer lengths it will probably be necessary to limit the design frequency to 0.4 Hz or less
to keep the beam weights practical. The corresponding diameters for these beams are
shown in figure 6. The coilable longeron beam diameter is out of the practical design
range for frequencies greater than 0.4 Hz while the aluminum beam is probably

11



impractically large over the entire range. Even the rigidizable begins to assume
impractical diameters for frequencies above 0.4 Hz.

L=28 meters. - For this beam length the angular acceleration is 0.005 rad/ sec? as
given by equation R2. However, for this length the beam tip mass was not increased over
that for the 14 m beam. If the tip mass were increased as a function of a square of the
length this would result in a tip weight of about 240 lbs. This was not considered to be
practical for most applications so the tip weight was kept at 61.76 lbs. It should also be
pointed out that this 28 m length is the same as the IAE support boom length3. In fact
this length and tip mass are representative of design conditions for large inflatable
reflector applications. The beam weights for this length are shown in figure 7 and the
corresponding diameters are shown in figure 8. In figure 7 it can be seen that the
rigidizable beam is lightest over most of the practical frequency range. Because of the
rapid increase in beam weight and diameter with frequency, the design frequency for such
structures would probably have to be restricted to 0.2 Hz or less.

Weight as a function of length - In figure 9 the weights of the four beam concepts are
plotted as a function of length for a fixed natural frequency of 0.2 Hz. This figure
demonstrates that the rigidizable material beam is quite efficient for the longer lengths.
In figure 10 the same weight curves are presented with the addition of a 0.006" thick
aluminum tubular beam. As can be seen from the figure this thickness results in an
aluminum beam with the same efficiency as the rigidizable material beam. Because of
the relatively simple deployment process for the aluminum beam, a research effort should
be conducted to determine if such a beam could be developed.

CONCLUDING REMARKS
The purpose of this investigation was to develop and demonstrate a design methodology
for tubular, rigidizable, space beam structures. This methodology was applied to a new
class of rigidizable beams to permit a rational comparison with alternate deployable
concepts. Specifically the rigidizable beams were compared with the STEM and coilable
longeron beams on a weight and diameter basis.

A series of closed-form equations were developed for the weight and diameter for each of
the concepts for the condition of a long beam cantilevered from a spacecraft with a tip
mass. The two design requirements considered were a lowest natural frequency
constraint and a root moment constraint imposed by a spacecraft angular acceleration.
Although it is difficult to draw completely general conclusions as to the relative
efficiency of the different beam concepts, representative small spacecraft operational
conditions were assumed to enable a comparison to be made.

The two primary rigidizable concepts investigated were a 0.011" thick KEVLAR fabric
impregnated with a rigidizable matrix and a 0.003" thick aluminum tube which is
rigidized by pressure yielding the material. Beam lengths ranging from 3.5 m to 28 m
were investigated for a frequency range from 0.02 Hz to 1 Hz. The strength constraint
imposed was that the beam be required to withstand a 0.03g lateral loading. The beams
were assumed to have a tip mass that was larger than the mass of the beam. This tip mass

12



was inertially similar to the mass of a distributed solar array. Results from this study led
to the following conclusions:

1) Because of the discrete practical thickness constraints imposed on the different tubular
concepts the active design constraint, frequency or strength, is a function of beam length
and required frequency. For the shorter lengths and higher frequency requirements the
frequency constraint is active, while for longer lengths and lower frequency requirements
the strength constraint is active.

2) The three tubular beams investigated, the KEVLAR rigidizable, the aluminum, and the
steel STEM all have significantly smaller diameters than the coilable longeron beam.

3) For shorter length applications the 3 mil aluminum beam is the lightest and most
compact for low natural frequency requirements.

4) For longer length applications the KEVLAR rigidizable beam is the lightest and most
compact.

5) If thicker (~ 0.006") aluminum beam concepts could be developed, they would be very
efficient over the entire range of parameters investigated. Since the rigidizable aluminum
beam is so conceptually simple, it is recommended that alternate wall constructions be
investigated to extend its range of application.

6) The closed-form weight and diameter equations developed herein enable a rational
assessment to be made of the effect of material properties and thicknesses on deployable
beam performance. For example, for frequency designed beams the weight is

proportional to 1/ E'? while for strength designed beams the weight is proportional to
1/E. Such knowledge permits a quick assessment of the relative performance offered by
alternate material systems.

7) The design methodology developed herein permits a rational assessment of the effect
of spacecraft requirements (frequency and strength) on deployable beam weight and
diameter. It is recommended that this methodology be used early in the design process to
assist in establishing rational and reasonable spacecraft design requirements. Conducting
a thorough sensitivity study of deployable beam weight and diameter to spacecraft design
requirements early in the design process should lead to the most robust design at the
lowest cost in terms of weight and stowage efficiency.

13
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Figure 7. - Deployable beam weight as a funtion of frequency for L = 28m.
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Figure 8. - Deployable beam diameter as a funtion of frequency for L = 28m.
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Figure 9. - Beam weight as a function of length for f = 0.2 Hz.
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Figure 10. - Beam weight as a function of length for f = 0.2 Hz with additonal
aluminum curve for .006" thickness wall.



